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The creators of statistical processing software for the marketing research community
have confronted them with a variety of approaches in dealing with significance testing relating
to weighted sample means. Each of these approaches produces a different variance of the
weighted sample mean, and thus a different test statistic. The purpose of this note is to explain
their bases, compare their approaches, and make some recommendations.

1. Terminology
The formula for the weighted mean is
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And so the variance of the weighted mean is
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If each of the x’s has the same variance, o2, then this reduces to
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where the “effective sample size” f is given by
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2. Estimation of ¢°

a. WinCross

If each of the x’s has the same expected value p and variance o, then the usual estimate
of the variance, namely

where

is an unbiased estimate of o®. It is this estimate that is used by WinCross in computing the
variance of the weighted mean x*, i.e., the WinCross estimate of the variance of the weighted
mean is s/f .

b. SPSS
An alternative estimate of the variance o, used by SPSS in its computations, is based
on the weighted data, namely
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It can be shown that this estimate is a biased estimate of 02, in that
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so that a proper unbiased estimate of o2 based on s2 would be gs?, where the unbiasing factor
g is given by
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SPSS does not perform this adjustment, but instead uses the biased estimate s>. SPSS
compounds the estimation problem by estimating the variance of the weighted mean by
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instead of by s’ /f. That is, instead of dividing s’ by the “effective sample size” f it divides s?
by the sum of the weights, the “weighted sample size,”
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c. Mentor
First let us establish a glossary relating CfMC Mentor’s notation to ours.
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So E=F? /Y is the effective sample size, which we call f. The weighted mean is M=S/F, which
we call x*. Mentor calculates an “adjusted sum of squares” A, via the following formula:

A= ﬂ
Y/F
Swd — (Y wx) /Y w
_ i—1 i-1

W'Y w,
i=1 i=1
This can be rewritten as
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so that the expected value of A is
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Mentor’s estimate of ¢ is given by V=A/(E-1), or
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and so we see that it is an unbiased estimate of °.
Following is an algebraically simplified expression for s>, Mentor’s estimate of o
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Mentor then estimates the variance of x* by s’ /f.

3. Comparison
a. Variance of WinCross estimate of variance of x*

Since both the WinCross estimate and the Mentor estimate of the variance of x* are
unbiased, the way one must compare the two estimates is by determining which one of these
estimates has the smaller variance. Since (n-1)s%/c? has a chi-square distribution with n-1
degrees of freedom, we know that the variance of (n-1)s s?/c” is 2(n-1), so that variance of the
WinCross estimate of s, namely s?, is 26* /(n-1), and the variance of the WinCross estimate of

the variance of x* is 2¢*/f* (n-1).




b. Variance of Mentor estimate of variance of x*

Since both WinCross and Mentor estimate the variance of x* by dividing their estimates
of ° by f, one need only compare the variance of s?, the WinCross estimate of o , with the
variance of s?, Mentor’s estimate of o°. We first establish some notation. Let X be the n-
vector of observations, E be the n-vector of 1's, and | be the identity matrix. Then s can be
expressed as

s”=aX'AX
where a=1/(n-1) and A =1 - (1/n)EE".

We can express s’ as
s’ =bX'BX

where, as above, c is the “weighted sample size,”
b=———,

B=D,, - (1/c)WW", W is the n-vector of weights, and D,, is a diagonal matrix with the weights
w; on the diagonal.

The symmetric matrices A and B can each be expressed as a product of orthogonal and
diagonal matrices, where the orthogonal matrices are the matrices of eigenvectors of A and B
and the diagonal matrices are matrices containing the eigenvalues of A and B. Let the
decompositions of A and B be expressed as A=Qa'Da Qa and B=Qg'Dg Qs. Then

s?=aX'Qa’'DaQaX=aYa'DaY A
and

SC2 = bX'QB'DBQBX:bYB'DBYB
Since the covariance matrix of X is o”l, and both Qa and Qg are orthogonal matrices, the
covariance matrix of Ya is 62 Qa’Qa=c? | and the covariance matrix of Yg is 6°Qg'Qg=c" I.
Therefore s* and s. are expressible as a weighted sum of squares of independent variables with

common variance o2, and where the weights are the eigenvalues of aDa and bDg , respectively.
That is
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and so, since y2./c® and y2/c® have chi-square distributions with 1 degree of freedom, so that
Var(y;)=Var(y} )=2c" , we see that the variances of the two estimates are expressible in terms
of the sum of squares of the eigenvalues of aDa and bDg , namely
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It remains to determine these eigenvalues.

All but one of the eigenvalues of A are equal to 1, with the n-th eigenvalue equal to 0
(see S.N. Roy, B.G. Greenberg, and A.E. Sarhan “Evaluation of Determinants, Characteristic
Equations and their Roots for a Class of Patterned Matrices” Journal of the Royal Statistical
Society. Series B (Methodological), Vol. 22, No. 2. (1960), pp. 348-359).. Thus the sum of the
eigenvalues of A is n-1, and so, since a® =1/(n-1)* , we see that Var(s®) = 26* /(n-1), as
demonstrated earlier using a nonmatricial derivation.

We need not determine the eigenvalues of B to calculate their sum of squares, for
B?=Qg'Ds Qs Qs'Ds Qs= Qg'Dg DeQg, and so the sum of squares of the eigenvalues of B is
equal to the sum of eigenvalues of B® . But the sum of eigenvalues of a symmetric matrix is
equal to the trace of that matrix, i.e., the sum of its diagonal terms. So we need only look at the
diagonal terms of B? to obtain this required quantity.
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c. Comparison
Before proceeding with a proof that Var(s® )< Var(s?), | will illustrate these

computations with an example. | selected as weights 100 random numbers from a uniform
distribution between 0 and 1. These weights, along with their squares and cubes, are given in
Appendix I. The variance of s?, excluding the factor 2c* is 1/99= 0.010101. The various sums
needed to compute the variance of s> are

D w, =45.040576
i=1
D w? =29.631266
i=1

D w’=22.913609
i=1

The variance of s?, again excluding the factor 26*, is calculated as
29.631266 x (45.0405756)% — 2 x 22.913609 x 45.040576 + (29.631266)°
(45.0405756)* — 2 x 29.631266 x (45.040576)> + (29.631266)°
Thus in this example use of s? will produce an estimate of the variance of x* with 1.46 times

=0.014756

the variance compared with the use of s’.

Now let us compare Var(s?) with Var( s2). One can simplify the expression for Var(s?)
by assuming that the weights sum to 1. This merely rescales the weights and will have no
impact on the computation of Var(s’). Then Var(s’) reduces to
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Note that when the w’s are all equal to 1/n, then
2" n/n*-2n/n*+(n/n*)? 20*

Var(s’) = =
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which is the same as Var(s?) in that case.

Let us now determine what are the values of the w’s that minimize Var(s?) subject to
the constraint that the sum of the w’s is equal to 1. To do this we form the Lagrangean

L =log(25*) + Iog[Zn:vvi2 - Z_Zn:wf - (Zn:wf)z]— Iog[l—Z_Zn: W+ (Zn:wf)z]—f(zn:wi -1,

set the derivative of L with respect to each of the w; equal to 0, and solve for the minimizing
values of the w; and &, the Lagrange multiplier. The result of this is the set of n equations
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The only way for this equation to hold for each of the w; is when all of the w; are equal, i.e.,
when s? =s? . Otherwise Var( s’ ) will be greater than Var(s?).

4. Conclusion

Given both the bias in the SPSS estimate of ¢ and its incorrect denominator in
determining the standard error of x*, the probabilities calculated based on the t-statistic will be
incorrect. The probabilities based on both the WinCross and Mentor statistics will be correct,
but, because Mentor uses an estimate of the variance of x* with a larger variance than that of
the estimate used by WinCross, it is more likely that one will find fewer significant differences
using the Mentor procedure than using the WinCross procedure.
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APPENDIX |

2
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Wi Wi w
0.995127 0.990278  0.98545212
0.991954 0.983973  0.97605569
0.989075 0.978269  0.96758176
0.982972 0.966234  0.94978092
0.971904 0.944597  0.91805798
0.968704 0.938387  0.90901967
0.965210 0.931630  0.89921892
0.954774 0.911593  0.87036567
0.952251 0.906782  0.86348403
0.941401 0.886236  0.83430331
0.938380 0.880557  0.82629710
0.919475 0.845434  0.77735568
0.917015 0.840917  0.77113305
0.888908 0.790157  0.70237726
0.882978 0.779650  0.68841393
0.853234 0.728008  0.62116140
0.837742 0.701812  0.58793710
0.823839 0.678711  0.55914834
0.817090 0.667636  0.54551875
0.810228 0.656469  0.53188990
0.805057 0.648117  0.52177095
0.793969 0.630387  0.50050756
0.782669 0.612571  0.47944015
0.781462 0.610683  0.47722545
0.736144 0.541908  0.39892231
0.722549 0.522077  0.37722626
0.718437 0.516152  0.37082250
0.693553 0.481016  0.33360993
0.663519 0.440257  0.29211919
0.648944 0.421128  0.27328869
0.610076 0.372193  0.22706585
0.578844 0.335060  0.19394769
0.575269 0.330934  0.19037631
0.571105 0.326161 0.18627213
0.538395 0.289869  0.15606412
0.537269 0.288658  0.15508698
0.523968 0.274542  0.14385147
0.521198 0.271647  0.14158206
0.507969 0.258033  0.13107251
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0.471876
0.462365
0.456192
0.445603
0.441056
0.437094
0.422376
0.421953
0.417159
0.405299
0.392635
0.387894
0.383761
0.377796
0.371654
0.357678
0.341958
0.306573
0.305468
0.296491
0.289246
0.283096
0.280116
0.269943
0.266302
0.265191
0.257537
0.249131
0.233802
0.231034
0.227916
0.207306
0.206597
0.192060
0.190022
0.188724
0.184651
0.180900
0.179789
0.169282
0.155006

0.222667
0.213781
0.208111
0.198562
0.194530
0.191051
0.178401
0.178044
0.174022
0.164267
0.154162
0.150462
0.147273
0.142730
0.138127
0.127934
0.116935
0.093987
0.093311
0.087907
0.083663
0.080143
0.078465
0.072869
0.070917
0.070326
0.066325
0.062066
0.054663
0.053377
0.051946
0.042976
0.042682
0.036887
0.036108
0.035617
0.034096
0.032725
0.032324
0.028656
0.024027
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0.10507119
0.09884503
0.09493864
0.08847984
0.08579880
0.08350732
0.07535251
0.07512634
0.07259469
0.06657736
0.06052949
0.05836321
0.05651744
0.05392275
0.05133534
0.04575902
0.03998695
0.02881388
0.02850343
0.02606361
0.02419926
0.02268826
0.02197929
0.01967054
0.01888527
0.01864989
0.01708122
0.01546263
0.01278041
0.01233183
0.01183926
0.00890914
0.00881804
0.00708453
0.00686138
0.00672174
0.00629586
0.00591992
0.00581151
0.00485101
0.00372431
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95
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99
100

0.151594
0.149657
0.146832
0.123566
0.121520
0.117982
0.111100
0.109864
0.101032
0.094285
0.091617
0.088234
0.067813
0.063359
0.050390
0.034176
0.029486
0.029208
0.026666
0.009006

0.022981
0.022397
0.021560
0.015269
0.014767
0.013920
0.012343
0.012070
0.010207
0.008890
0.008394
0.007785
0.004599
0.004014
0.002539
0.001168
0.000869
0.000853
0.000711
0.000081
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0.00348374
0.00335190
0.00316564
0.00188667
0.00179450
0.00164228
0.00137133
0.00132607
0.00103128
0.00083816
0.00076900
0.00068692
0.00031185
0.00025435
0.00012795
0.00003992
0.00002564
0.00002492
0.00001896
0.00000073





