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The creators of statistical processing software for the marketing research community  
have confronted them with a variety of approaches in dealing with significance testing relating 
to weighted sample means. Each of these approaches produces a different variance of the  
weighted sample mean, and thus a different test statistic. The purpose of this note is to explain  
their bases, compare their approaches, and make some recommendations.  

1. Terminology
The formula for the weighted mean is  
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And so the variance of the weighted mean is  
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If each of the x’s has the same variance, 2, then this reduces to  
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where the “effective sample size” f is given by  
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2. Estimation of 2  
 a. WinCross  
 If each of the x’s has the same expected value µ and variance 2, then the usual estimate  
of the variance, namely  
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is an unbiased estimate of 2.  It is this estimate that is used by WinCross in computing the  
variance of the weighted mean x*, i.e., the WinCross estimate of the variance of the weighted  
mean is s2/f .  
 
 b. SPSS  
 An alternative estimate of the variance 2, used by SPSS in its computations, is based 
on the weighted data, namely  
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It can be shown that this estimate is a biased estimate of 2, in that  
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so that a proper unbiased estimate of 2 based on 2

ws   would be g 2
ws , where the unbiasing factor 

g is given by  
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 SPSS does not perform this adjustment, but instead uses the biased estimate 2

ws .  SPSS  

compounds the estimation problem by estimating the variance of the weighted mean by  
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instead of by 2
ws /f.  That is, instead of dividing 2

ws  by the “effective sample size” f it divides 2
ws  

by the sum of the weights, the “weighted sample size,”  
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 c. Mentor  
 First let us establish a glossary relating CfMC Mentor’s notation to ours.  
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So E=F2 /Y is the effective sample size, which we call f. The weighted mean is M=S/F, which  
we call x*. Mentor calculates an “adjusted sum of squares” A, via the following formula:  
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This can be rewritten as  
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so that the expected value of A is  
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Mentor’s estimate of 2 is given by V=A/(E-1), or  
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and so we see that it is an unbiased estimate of 2.  
 
 Following is an algebraically simplified expression for 2

cs , Mentor’s estimate of 2.  
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Mentor then estimates the variance of x* by 2

cs /f. 

 
3. Comparison  
 a. Variance of WinCross estimate of variance of x*  
 Since both the WinCross estimate and the Mentor estimate of the variance of x* are  
unbiased, the way one must compare the two estimates is by determining which one of these  
estimates has the smaller variance. Since (n-1)s2/2 has a chi-square distribution with n-1  
degrees of freedom, we know that the variance of (n-1)s s2/2 is 2(n-1), so that variance of the  
WinCross estimate of s, namely s2, is 24 /(n-1), and the variance of the WinCross estimate of  
the variance of x* is 24/f2 (n-1). 
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b. Variance of Mentor estimate of variance of x*  
 Since both WinCross and Mentor estimate the variance of x* by dividing their estimates  
of 2 by f, one need only compare the variance of s2, the WinCross estimate of 2 , with the  
variance of 2

cs , Mentor’s estimate of 2.  We first establish some notation. Let X be the n-

vector of observations, E be the n-vector of 1's, and I be the identity matrix. Then s2 can be 
expressed as  

s2=aXAX 
where a=1/(n-1) and A = I - (1/n)EE´.  
 
 We can express 2

cs  as  
2
cs =bXBX 

 
where, as above, c is the “weighted sample size,”   
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B=Dw - (1/c)WW´, W is the n-vector of weights, and Dw is a diagonal matrix with the weights 
wi on the diagonal.  
 
 The symmetric matrices A and B can each be expressed as a product of orthogonal and  
diagonal matrices, where the orthogonal matrices are the matrices of eigenvectors of A and B  
and the diagonal matrices are matrices containing the eigenvalues of A and B. Let the  
decompositions of A and B be expressed as A=QADA QA and B=QBDB QB. Then  

s2=aXQADAQAX=aYADAYA 

and  
2
cs = bXQBDBQBX=bYBDBYB 

Since the covariance matrix of X is 2I, and both QA and QB are orthogonal matrices, the 
covariance matrix of YA is 2 QAQA=2 I and the covariance matrix of YB  is 2QBQB=2 I.  
Therefore s2 and 2

cs  are expressible as a weighted sum of squares of independent variables with  

common variance 2, and where the weights are the eigenvalues of aDA and bDB , respectively.  
That is  
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and so, since 2
Aiy /2  and 2

Biy /2  have chi-square distributions with 1 degree of freedom, so that 

Var( 2
Aiy )=Var( 2

Biy )=24 , we see that the variances of the two estimates are expressible in terms 

of the sum of squares of the eigenvalues of aDA and bDB , namely 
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It remains to determine these eigenvalues.  
 
 All but one of the eigenvalues of A are equal to 1, with the n-th eigenvalue equal to 0  
(see S.N. Roy, B.G. Greenberg, and A.E. Sarhan “Evaluation of Determinants, Characteristic  
Equations and their Roots for a Class of Patterned Matrices” Journal of the Royal Statistical  
Society. Series B (Methodological), Vol. 22, No. 2. (1960), pp. 348-359).. Thus the sum of the  
eigenvalues of A is n-1, and so, since a2 =1/(n-1)2 , we see that Var(s2) = 24 /(n-1), as  
demonstrated earlier using a nonmatricial derivation.  
 
 We need not determine the eigenvalues of B to calculate their sum of squares, for  
B2=QBDB QB QBDB QB= QBDB DBQB, and so the sum of squares of the eigenvalues of B is 
equal to the sum of eigenvalues of B2 . But the sum of eigenvalues of a symmetric matrix is 
equal to the trace of that matrix, i.e., the sum of its diagonal terms. So we need only look at the 
diagonal terms of B2 to obtain this required quantity. 
 
 Since B=Dw - (1/c)WW´, B2 = 2

WD  - (1/c)DW WW´- (1/c) WW´DW + (1/c)2 WW´WW´,  

and 
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and so  
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 c. Comparison  
 Before proceeding with a proof that Var(s2 )Var( 2

cs ), I will illustrate these 

computations with an example. I selected as weights 100 random numbers from a uniform 
distribution between 0 and 1. These weights, along with their squares and cubes, are given in 
Appendix I.  The variance of s2, excluding the factor 24, is 1/99= 0.010101. The various sums 
needed to compute the variance of 2

cs  are  
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The variance of 2
cs , again excluding the factor 24, is calculated as  
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Thus in this example use of 2
cs  will produce an estimate of the variance of x* with 1.46 times 

the variance compared with the use of 2
cs .  

 
 Now let us compare Var(s2) with Var( 2

cs ). One can simplify the expression for Var( 2
cs )  

by assuming that the weights sum to 1. This merely rescales the weights and will have no 
impact on the computation of Var( 2

cs ). Then Var( 2
cs ) reduces to  
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Note that when the w’s are all equal to 1/n, then  
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which is the same as Var(s2) in that case. 
 
 Let us now determine what are the values of the w’s that minimize Var( 2

cs ) subject to 

the constraint that the sum of the w’s is equal to 1. To do this we form the Lagrangean  
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set the derivative of L with respect to each of the wi equal to 0, and solve for the minimizing 
values of the wi and , the Lagrange multiplier. The result of this is the set of n equations 
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The only way for this equation to hold for each of the wi is when all of the wi are equal, i.e., 
when 2

cs =s2 . Otherwise Var( 2
cs ) will be greater than Var(s2).   

 
4. Conclusion  
 Given both the bias in the SPSS estimate of 2 and its incorrect denominator in 
determining the standard error of x*, the probabilities calculated based on the t-statistic will be 
incorrect. The probabilities based on both the WinCross and Mentor statistics will be correct, 
but, because Mentor uses an estimate of the variance of x* with a larger variance than that of 
the estimate used by WinCross, it is more likely that one will find fewer significant differences 
using the Mentor procedure than using the WinCross procedure.  
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APPENDIX I 

                                                         w                   w2                  w3___                    
1 0.995127 0.990278 0.98545212 
2 0.991954 0.983973 0.97605569 
3 0.989075 0.978269 0.96758176 
4 0.982972 0.966234 0.94978092 
5 0.971904 0.944597 0.91805798 
6 0.968704 0.938387 0.90901967 
7 0.965210 0.931630 0.89921892 
8 0.954774 0.911593 0.87036567 
9 0.952251 0.906782 0.86348403 
10 0.941401 0.886236 0.83430331 
11 0.938380 0.880557 0.82629710 
12 0.919475 0.845434 0.77735568 
13 0.917015 0.840917 0.77113305 
14 0.888908 0.790157 0.70237726 
15 0.882978 0.779650 0.68841393 
16 0.853234 0.728008 0.62116140 
17 0.837742 0.701812 0.58793710 
18 0.823839 0.678711 0.55914834 
19 0.817090 0.667636 0.54551875 
20 0.810228 0.656469 0.53188990 
21 0.805057 0.648117 0.52177095 
22 0.793969 0.630387 0.50050756 
23 0.782669 0.612571 0.47944015 
24 0.781462 0.610683 0.47722545 
25 0.736144 0.541908 0.39892231 
26 0.722549 0.522077 0.37722626 
27 0.718437 0.516152 0.37082250 
28 0.693553 0.481016 0.33360993 
29 0.663519 0.440257 0.29211919 
30 0.648944 0.421128 0.27328869 
31 0.610076 0.372193 0.22706585 
32 0.578844 0.335060 0.19394769 
33 0.575269 0.330934 0.19037631 
34 0.571105 0.326161 0.18627213 
35 0.538395 0.289869 0.15606412 
36 0.537269 0.288658 0.15508698 
37 0.523968 0.274542 0.14385147 
38 0.521198 0.271647 0.14158206 
39 0.507969 0.258033 0.13107251 
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40 0.471876 0.222667 0.10507119 
41 0.462365 0.213781 0.09884503 
42 0.456192 0.208111 0.09493864 
43 0.445603 0.198562 0.08847984 
44 0.441056 0.194530 0.08579880 
45 0.437094 0.191051 0.08350732 
46 0.422376 0.178401 0.07535251 
47 0.421953 0.178044 0.07512634 
48 0.417159 0.174022 0.07259469 
49 0.405299 0.164267 0.06657736 
50 0.392635 0.154162 0.06052949 
51 0.387894 0.150462 0.05836321 
52 0.383761 0.147273 0.05651744 
53 0.377796 0.142730 0.05392275 
54 0.371654 0.138127 0.05133534 
55 0.357678 0.127934 0.04575902 
56 0.341958 0.116935 0.03998695 
57 0.306573 0.093987 0.02881388 
58 0.305468 0.093311 0.02850343 
59 0.296491 0.087907 0.02606361 
60 0.289246 0.083663 0.02419926 
61 0.283096 0.080143 0.02268826 
62 0.280116 0.078465 0.02197929 
63 0.269943 0.072869 0.01967054 
64 0.266302 0.070917 0.01888527 
65 0.265191 0.070326 0.01864989 
66 0.257537 0.066325 0.01708122 
67 0.249131 0.062066 0.01546263 
68 0.233802 0.054663 0.01278041 
69 0.231034 0.053377 0.01233183 
70 0.227916 0.051946 0.01183926 
71 0.207306 0.042976 0.00890914 
72 0.206597 0.042682 0.00881804 
73 0.192060 0.036887 0.00708453 
74 0.190022 0.036108 0.00686138 
75 0.188724 0.035617 0.00672174 
76 0.184651 0.034096 0.00629586 
77 0.180900 0.032725 0.00591992 
78 0.179789 0.032324 0.00581151 
79 0.169282 0.028656 0.00485101 
80 0.155006 0.024027 0.00372431 
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81 0.151594 0.022981 0.00348374 
82 0.149657 0.022397 0.00335190 
83 0.146832 0.021560 0.00316564 
84 0.123566 0.015269 0.00188667 
85 0.121520 0.014767 0.00179450 
86 0.117982 0.013920 0.00164228 
87 0.111100 0.012343 0.00137133 
88 0.109864 0.012070 0.00132607 
89 0.101032 0.010207 0.00103128 
90 0.094285 0.008890 0.00083816 
91 0.091617 0.008394 0.00076900 
92 0.088234 0.007785 0.00068692 
93 0.067813 0.004599 0.00031185 
94 0.063359 0.004014 0.00025435 
95 0.050390 0.002539 0.00012795 
96 0.034176 0.001168 0.00003992 
97 0.029486 0.000869 0.00002564 
98 0.029208 0.000853 0.00002492 
99 0.026666 0.000711 0.00001896 
100 0.009006 0.000081 0.00000073 
    

 




